On Using Encryption Techniques to Enhance
Sticky Policies Enforcement

Qiang Tang

DIES, Faculty of EEMCS
University of Twente, the Netherlands
q.tang@utwente.nl

Abstract. How to enforce privacy policies to protect sensitive personal
data has become an urgent research topic for security researchers, as very
little has been done in this field apart from some ad hoc research efforts.
The sticky policy paradigm, proposed by Karjoth, Schunter, and Waid-
ner, provides very useful inspiration on how we can protect sensitive per-
sonal data, but the enforcement is very weak. In this paper we provide an
overview of the state of the art in enforcing sticky policies, especially the
concept of sticky policy enforcement using encryption techniques includ-
ing Public-Key Encryption (PKE), Identity-Based Encryption (IBE),
Attribute-Based Encryption (ABE), and Proxy Re-Encryption (PRE).
We provide detailed comparison results on the (dis)advantages of these
enforcement mechanisms. As a result of the analysis, we provide a gen-
eral framework for enhancing sticky policy enforcement using Type-based
PRE (TPRE), which is an extension of general PRE.

1 Introduction

With the proliferation of sensitive personal information (such as Personal Health
Record (PHR) [29]), the related privacy concerns have been the focus of the infor-
mation security community. A number of international or national legislations,
such as the Directive on privacy and electronic communications [11] the Health
Insurance Portability and Accountability Act (HIPAA) [31], require that the
owner of sensitive data should be able to specify the access control policies.

In practice, usually complex privacy policies are needed to protect sensi-
tive personal data and many entities may get involved [20,22]. Even managing
to specify the policies, without effective enforcement mechanisms, data owners
would lose control over their personal information after the initial disclosure.
Little has been done so far to directly involve data owners (or entities acting
on their behalf) in the enforcement of privacy policies, especially in those so-
phisticated environments such as healthcare. Take PHR as an example, where
a patient monitors several vital functions as part of a disease management pro-
gram. The attending physician needs to interpret the data, but meanwhile the
insurance company or health management organization needs statistical data.
The patient may grant full access to the data to physicians, but may want to

www.manaraa.com

limit access for non-clinical personnel. In reality, entities (say, a hospital), acting
on the patient’s behalf, are incapable of appropriately controlling the confiden-
tial information on behalf of their customers. Presently, there does not exist
an effective policy enforcement mechanism which allows the patient to enforce
privacy policies on its PHR.

Hence, there is an urgent need to have an effective policy enforcement mecha-
nism for data owners to grant their consents on how to use their data and strictly
enforce these policies. Karjoth, Schunter, and Waidner [17] introduce the sticky
policy paradigm and mechanisms for enterprise privacy enforcement, i.e. a plat-
form for enterprise privacy practices (E-P3P). The concept of sticky policy is to
attach privacy policies to data owners’ data and drive access control decisions
and policy enforcement. This paradigm provides very useful inspiration on how
we can protect sensitive personal data. However, the implementation of sticky
policy in [17] is rather weak in the sense that the enforcement is not guaranteed
and the prevention of modification of the policies is also not guaranteed. Since
the proposal of this concept, several following works, as described in Section 2,
have considered using encryption techniques to enhance sticky policy enforce-
ment, however, a comprehensive study is required to evaluate these methods.

- b
Vs i S
/ X
i \
i l
Data Source \ c c g J
Bita Pf’ﬂ \th / ¥
~ o
D4 B
Data
Data Source - Data?mjgr D“Pl;i:;‘d L:lj

/ N\
/ \
1 |
e e o

\Mll:e /

T —

—_—

Fig. 1. System Structure for Sticky Policy Enforcement

www.manaraa.com

Contribution. In this paper we evaluate various sticky policy enforcement mecha-
nisms constructed from encryption techniques, including traditional Public-Key
Encryption (PKE)[4]}, Identity-Based Encryption (IBE)[27], Attribute-Based
Encryption (ABE)[26], and Proxy Re-Encryption (PRE) [7,18]. A general sys-
tem structure, as shown in Figure 1, is assumed for the implementation of sticky
policy enforcement mechanisms. To our knowledge, this structure generalizes all
the existing schemes in the literature. It is worth noting that, for the simplic-
ity reason, Policy Enforcement Point (PEP) represents also other components
(such as Policy Decision Point and Policy Information Point) that are standard
in implementing access control policies [23].

Detailed comparison results (as shown in Section 4) are obtained by consid-
ering the expressiveness of privacy policies, the complexity of updating privacy
policies and private keys in the system, and the requirements on the the Trusted
Third Party (TTP) and the PEP. In particular, our results show that there is
always a tradeoff between the expressiveness and other aspects. For example,
the enforcement mechanism using IBE enables more flexible policy expressive-
ness than the enforcement mechanism using PKE, however, the management of
private keys in the former are more complex. Nevertheless, we observe that the
enforcement mechanism using PRE provides a general framework to enhance
sticky policy enforcement using other encryption techniques in practice. By in-
stantiating the encryption schemes for the delegator and the delegatee in PRE,
this enforcement mechanism can be realized in a very flexible way.

In reality, the data owner may want to choose different PEPs to help her
enforce her privacy policies on her data at different sensitive levels. For example,
she may choose to pay a certain amount money to a trustworthy PEP in order to
protect extremely sensitive data, while choose to pay less money to a less trust-
worthy PEP to protect less sensitive data. In this paper, we propose a sticky
policy enforcement mechanism which uses Type-based PRE (TPRE) [30]. This
new enforcement mechanism provide the data owner the flexibility to choose dif-
ferent proxies to enforce policies on data at different sensitive levels. Compared
with that using PRE, this new enforcement mechanism preserves all the advan-
tages while requiring only one public/private key pair instead of multiple ones.
In addition, the new mechanism is more robust against proxy compromises.

Organization. The rest of the paper is organized as follows. In Section 2 we briefly
review the literature about sticky policy enforcement. In Section 3 we propose a
system structure for sticky policy enforcement and enumerate some of the issues
we need to consider in evaluating different enforcement mechanisms. In Section
4 we present the general sticky policy enforcement mechanisms using various
encryption techniques (PKE, IBE, ABE, and PRE) and show the comparison
results. In Section 5 we provide a general framework to enhance sticky policy
enforcement using TPRE. In Section 6 we conclude the paper.

! Clearly, IBE and ABE are also public key encryption schemes. Nevertheless, we use
the notation PKE to refer the traditional public key encryption schemes [4]. The
meanings of various notations should be clear in the contexts.

www.manaraa.com

2 Related Work

The seminal work towards a fine-grained access control framework for sensitive
information is proposed by Karjoth, Schunter, and Waidner [17]. They introduce
the sticky policy paradigm and mechanisms for enterprise privacy enforcement,
i.e. platform for enterprise privacy practices (E-P3P). The concept of sticky
policy is the following: when disclose its data, a data owner expresses its consents
into privacy policies along with selected opt-in and opt-out choices. Later on, the
specified policies should be attached to her data wherever the data moves and
drive authorization decisions. In [17], the enforcement of sticky policies relies
on trustworthy policy engines integrated with traditional authentication and
access control components. Therefore, the data owner needs to trust all possible
enterprises when disclosing their data. With this kind of enforcement, leakage of
personal information is unavoidable if something goes wrong with the involved
entities.

To guarantee only legitimate recipients have access to the sensitive data in
a distributed open environment, encryption is an indispensable tool. Intuitively,
if the data owner can express her policies into the encryption key, then she can
be assured that only the targeted recipients could obtain the data. Note that,
public key encryption is more useful in this case because symmetric encryption
requires a shared secret key to be pre-distributed. Though, in order to improve
efficiency public key encryption and symmetric encryption are always combined
using the KEM-DEM paradigm [10], where the public key encryption is used to
distribute the symmetric key which will be used to encrypt data. For simplicity,
we omit this trick in our discussion and this will not affect our results.

IBE [8,27] in general has the capability of enabling the encrypter to express
her policies for the encrypted data because she can choose any string as the
public key. Mont, Pearson, and Bramhall [21] describe a solution to enforce
sticky policy by using IBE [8,27]. In their solution, a sticky policy is mapped
to an IBE encryption key which describes the subject and the access condition.
Smart [28] introduces similar concepts.

Sahai and Waters [26] propose the concept of Attribute-Based Encryption
(ABE), where message senders provide a predicate describing how to share the
data. Goyal et al. [12] further develop the concept of ABE and propose two
different forms, namely Key-Policy ABE and Ciphertext-Policy ABE. In KP-
ABE, attributes are used to annotate the ciphertexts and predicates over these
attributes are ascribed to users’ secret keys, while in CP-ABE attributes are
used to describe the users credentials and the predicate over these credentials
are attached to the ciphertext by the encrypting party. The authors in [5] propose
new schemes for CP-ABE. Clearly, in order to enable the encrypter to express
her policies into the public key, the CP-ABE is more suitable than the KP-ABE.

PRE, proposed in [7,19], is a cryptographic primitive developed to delegate
the decryption right from one party (the delegator) to another (the delegatee).
Recently, proxy re-encryption has been shown very useful in a number of appli-
cations such as access control in file storage [2], email forwarding [32], and law

www.manaraa.com

enforcement [16]. Recently, Tang [30] extends the notion of PRE into TPRE,
which allows the delegator to use only a single public/private key pair but be
able to restrict the proxy to re-encrypt only a subset of her ciphertexts. Ibraimi
et al. [15] investigate a similar concept to TPRE to enforce personalized privacy
policies.

3 System Structure for Sticky Policy Enforcement

In this paper, we are not supposed to discuss how encryption techniques can
(not) be used to build a comprehensive sticky policy enforcement mechanism
that solve all issues. Instead, we focus on the confidentiality of personal data
and consider a simplified situation: the data owner has some sensitive data that
she wants to share with users from an organization, where she may or may not
be a member. We assume that an authorization rule is of the form

(subject, condition, object),

specifying that subject can read object under the condition condition, which is
a group of predicates. We further assume a defaulted denial rule, i.e. if there is
no explicit policy the request will be denied.

As shown in Figure 1, we assume the following types of components in a
sticky policy enforcement system:

— Data owner: She owns data items m; (1 < i < n) where n is an integer, and
wants to specify and enforce privacy policies over her data.

— PEP: The PEP is trusted by the data owner to store her (encrypted) data
and enforce (part of) her privacy policies on her data.

— Trusted Third Party (TTP): The registered users at the TTP are the poten-
tial recipient of the data owner’s data. We assume that the data owner fully
trusts the TTP.

According to the proposed system structure, the disclosure of personal sensi-
tive data works as follows: (1) For each data item m;, the data owner generates
the authorization rule and sends (a transformed version of) m; and the autho-
rization rule to the PEP. (2) Whenever m, is requested, the PEP should verify
that the authorization is satisfied and sends the ciphertext to the requester if
the verification is ok.

In the framework of E-P3P [17], m; is not transformed, and every entity,
which holds the data owner’s data, acts as a PEP because it is supposed to
enforce the policies attached to the data. Potentially, all PEPs have access to
the data owner’s data since they are fully responsible for the enforcement and
the data is not encrypted. This vulnerability will be mitigated if an enforce-
ment mechanism using encryption technique is adopted, because the data will
be transformed into the receipients’ ciphertext as shown in Section 4.

www.manaraa.com

In order to compare different enforcement mechanisms, we will take into
account the following issues.

1. Expressiveness: Role-Base Access Control (RBAC) [1] and Attribute-Based
Access Control (ABAC) [9] are believed to be more expressive than Manda-
tory Access Control (MAC) [3] and Discretionary Access Control (DAC)
[13], and they are also widely used in practice. Preferably, an enforcement
mechanism should be efficient in supporting RBAC and ABAC.

2. Requirements on the TTP: The TTP plays an important role in bootstrap-
ping the trust relationships between the data owner and the data receivers
by issuing/certifying private/public keys. Preferably, the TTP is only re-
quired to be online in the initialization phase and the policy enforcement is
transparent to TTP.

3. Requirements on the PEP: Under our assumption, the PEP may be required
to store the data owner’s data and enforce her policies when a user requests
the data. As the PEP is required to be always online, it may be a central
target of attacks. In an enforcement mechanism, preferably the violation to
the data owner’s policy is minimized even if the PEP is compromised.

4. Policy updating: In practice the data owner may need to update her privacy
policies on her data from time to time. Preferably, an enforcement mechanism
should be efficient for the data owner to do this.

5. Key updating: If cryptographic techniques are employed, key management
is always an important concern. The issues we are concerned are: key pairs
needs to be issued and certified, key pairs might expire and need to be
updated, and private keys might be compromised. Note that key updating
may trigger policy updating. Preferably, an enforcement mechanism should
be efficient in key updating.

Note that there is an unavoidable vulnerability even if the data is encrypted:
a user Bob who is authorized to access the data owner’s data may send the
data to another user Charlie who is not allowed to access the data. To mitigate
this vulnerability, management or legal measures should be taken, like audit
techniques and forensics. As shown by Pohls [24], cryptographic techniques such
as digital signature may be used to enforce these measures. A detailed discussion
of this issue is outside the scope of this paper and regarded to be an interesting
future work.

4 Comparison between Various Enforcement Mechanisms

To protect her sensitive data, an intuitive solution for the data owner is to have
a private database, which contains the data items m; (1 < i < n) and the cor-
responding privacy policies, and enforce the policies by herself. Unfortunately,
this method is too complex in practice. Alternatively, the data owner can store

www.manaraa.com

her data and the corresponding policies in a database controlled by the Pol-
icy Enforcement Point (PEP), which will then provide the enforcement?. Upon
receiving a request from Bob, the PEP proceeds as follows:

1. Verify Bob’s credential to make sure that he is the claimed subject, and
make sure the condition holds.

2. If the credential and condition are ok, send m to Bob through a secure
channel.

Clearly, the policy enforcement fully relies on the assumption that the PEP
is capable of verifying the requester’s credentials, hence, this solution creates
serious security concerns. First, the data owner needs to fully trust the PEP
because the latter completely controls the data and the enforcement of access
control policies. In practice the data owner may not accept this strong trust
assumption. Secondly, the PEP becomes a central target of attacks. Once the
PEP is compromised, the data owner’s data will be compromised. Note that the
PEP may try to encrypt the data in this solution to improve the security level,
but the above security concerns remain.

Next, we describe the policy enforcement mechanisms using different encryp-
tion techniques and provide the comparison results with respect to the issues
described in Section 3.

4.1 Enforcement Mechanism using PKE

The main concept of policy enforcement using PKE is letting the data owner
encrypt the message using the receiver’s public key, and letting the PEP enforce
other constraints. In this case, the subject is identified by the identity of the
receiver.

Suppose that the TTP uses a PKE scheme (Setup, KeyGen, Encrypt, Decrypt),
such as that in [4]. A formal definition of PKE is given in Appendix A. In the
initialization phase, the TTP issues a certificate to certify each user’s public key.
We further assume a user with identity id, is issued a key pair (pkiq4,, skid,),
where id, is certified in pk;q,.. The enforcement mechanism works as follows.

1. Policy enforcement by the data owner: If the the data owner wants to grant
the subject (identified by id,.) access to m; under the condition condition,
she proceeds as follows:

(a) Validate the receiver’s public key pkq, .

2 Many existing services, such as Google Health (https://www.google.com/health) and
Microsoft HealthVault (http://www.healthvault.com/), adopt this solution. In these
solutions, the data owner is supposed to store her PHR at Google or Microsoft and
specify the policies on how to distribute her data. Later on, Google or Microsoft is
supposed to faithfully enforce the data owner’s policies.

www.manaraa.com

(b) If the validation is ok, send (id,, condition, ¢;) to the PEP, where ¢; =
Encrypt(mi, pkid,)-

2. Policy enforcement by the PEP: When Bob requests the message m;, the
PEP does the following.

(a) Validate that condition holds.
(b) If the condition is ok, send ¢; to Bob.

The expressiveness of this enforcement mechanism is coarse because a PKE
certificate is usually issued with respect to the identity of the subject. Clearly,
this mechanism supports a DAC model well, while it not suitable if a RBAC or
ABAC model is going to be used. The RFC specification [25] defines a profile
for the use of X.509 attribute certificates in Internet protocols. With attribute-
based certificates the expressiveness can be improved, however, this enforcement
mechanism is less powerful than that using IBE or ABE. Note that an attribute
certificate binds a number of attributes to a public key and is different from the
IBE and ABE, where the attributes are actually the public key of the user.

The TTP should provide the service that can be used by the data owner to
check the validity of the receiver’s public key. The PEP should be semi-trusted
in the following sense. An adversary, who is not a subject in the authorization
rule but has obtained the ciphertext, cannot decrypt the ciphertext; however,
the subject, who is described in the policy, will be able to decrypt the ciphertext.
In the latter case, the policy will be violated if the condition is not satisfied when
the data is disclosed.

We consider the following situations where policy updating and key updating
may happen.

— To update the constraint condition in an authorization rule (id,., condition, ¢;),
the data owner just needs to inform the PEP to update the parameter
condition.

— For any authorization rule (id,.,condition,c;), if the subject id, is to be
changed to id;, the data owner needs to generate c; = Encrypt(m;, pkia,)
and let the PEP replace ¢; with c;. Since it is infeasible for the data owner
to recover m; from ¢;, the data owner needs to find another way to recover
m,; in order to compute ¢;. For example, the data owner may keep a copy of
her data in a secure storage for this purpose.

— If the private key sk;q, is compromised, then all authorization rules associ-
ated with id, should be updated. In more detail, a new key pair (pk;, ,skj,)
should be generated for id,. and, for any authorization rule (id,., condition, ¢;),
¢; should be replaced with ¢; = Encrypt(m;, pk;,). Basically, the data owner
can adopt any possible way as in the previous case. In addition, the data
owner may be able to get a copy of the compromised private key sk;q,. to
recover m; since this key has been compromised any way.

www.manaraa.com

4.2 Enforcement Mechanism using IBE

The main concept of policy enforcement using IBE is letting the data owner
encrypt the message using the receiver’s IBE identity, letting the PEP enforce the
left constraints, while letting the TTP enforce the policy on issuing the receiver’s
private key. Different from the case of PKE, an IBE identity could be any string.
For example, it can be a normal identity as in the case of PKE concatenated with
some other constraints, say “Bob]||9:00am - 6:00pm”. Furthermore, the identity
is also the public key for encryption.

Suppose that the TTP uses an IBE scheme (Setup, Keygen, Encrypt, Decrypt),
such as that in [8]. A formal definition of IBE is given in Appendix B. In an IBE
scheme, each user can ask the TTP to issue a private key for a claimed identity.
In more detail, the enforcement works as follows.

1. Policy enforcement by the data owner: If the data owner wants to grant the
subject (identified by id,.) access to m; under the condition condition, she
proceeds as follows:

(a) Validate the public key of the TTP.

(b) If the validation is ok, send (id,,condition,c;) to the PEP, where ¢; =
Encrypt(m;, id,.).

2. Policy enforcement by the PEP: When Bob requests the message m;, the
PEP does the following.

(a) Validate that condition holds.

(b) If the validation is ok, send (id,., ¢;) to Bob. Note that id,. should be sent
to Bob because it will be used by Bob to request his private key from
the TTP.

3. Policy enforcement by the TTP: When Bob requests his private key accord-
ing to the identity id,., the TTP does the following.

(a) Validate the identity id, for Bob.
(b) If the request is valid, send sk;q, to Bob.

The expressiveness of this enforcement mechanism is finer-grained than that
using PKE, because the data owner can embed a normal identity and some
constraints into the receiver’s IBE identity. The ultimate granularity of privacy
policy can be controlled by the construction of id,.. The more constraints in id,,
the finer for the data owner to enforce her policies. On the other hand, however,
the more constraints in id,., the more complexity for the TTP to issue the private
key because the TTP needs to check the validity of all the constraints in id,.

The TTP should be on-line to allow the receiver to request his private key
at any time. Simultaneously, the TTP should provide the identity provisioning
service so that the data owner can find out the appropriate identity for the
potential recipient of her data. Certainly, the TTP also plays the role of a policy
enforcement party, given that some constraints are embedded in id,.. In practice,

www.manaraa.com

we may find a tradeoff between the policy granularity for the data owner and the
workload for the TTP by balancing the constraints in id, and condition. The
PEP should be semi-trusted in the same sense as in the enforcement mechanism
using PKE. Note that, in this case, the trust on the PEP can be relaxed since
the PEP is required to enforce less constraints than in the case using PKE.

We consider the following situations where policy updating and key updating
may happen.

— To update the constraint condition in an authorization rule (id,., condition, ¢;),
the data owner just needs to inform the PEP to update the parameter
condition.

— For any authorization rule (id,.,condition,c;), if the subject id, is to be
changed to id;, the data owner needs to generate ¢! = Encrypt(m;,id;)
and let the PEP replace ¢; with ¢}. Similar to the case in the enforcement
mechanism using PKE, the data owner needs to find another way to recover
m; in order to compute c;.

— If the private key sk;q, is compromised, then all authorization rules associ-
ated with id,. should be updated. In more details, a new key pair (id;., skia:)
should be generated and, every authorization rule (id,,condition,c;), ¢;
should be replaced with (id)., condition, ¢;) where ¢ = Encrypt(m;, id,). Ba-
sically, the data owner can adopt any possible way as in the previous case.
In addition, the data owner may be able to get a copy of the compromised
private key sk;q, to recover m; since this key has been compromised any
way.

4.3 Enforcement Mechanism using CP-ABE

The main concept of policy enforcement using CP-ABE is letting the data owner
encrypt the message based on an access structure 7 which is defined using the
attributes in the system, and letting the PEP enforce other constraints.

Suppose the TTP uses a CP-ABE scheme (Setup, KeyGen, Encrypt, Decrypt),
such as that in [6]. A formal definition of CP-ABE is given in Appendix C. In
the initialization phase, each registered user is issued the private keys associated
with the the attributes he has; the TTP publishes the system public key pk. We
skip the issue on how to identify the attributes for each user. In more detail, the
enforcement works as follows.

1. Policy enforcement by the data owner: If the data owner wants to grant the
subject (whose attributes satisfy the access structure 7) access to m; under
the condition condition, she proceeds as follows:

(a) Validate the public key pk of the TTP.
(b) If the validation is ok, generate ¢; = Encrypt(m;, 7, pk) and send the
(1, condition, ¢;) to the PEP.

10

www.manaraa.com

2. Policy enforcement by the PEP: When Bob requests the message m;, the

PEP does the following.
(a) Validate that condition holds.
(b) If the condition is ok, send (7, ¢;) to Bob.

Due to the flexible expressiveness of CP-ABE, this enforcement mechanism
is finer-grained than those using the PKE and IBE in the sense that it is possible
to express privacy policy like “if Bob possesses 2 of 10 attributes can read the
message m”. On the other hand, this enforcement mechanism is less expressive
than that using IBE because all attributes are pre-defined by the TTP and the
data owner cannot generate new attributes on the fly.

The TTP does not need to be on-line as long as it issues the private keys for
each user. As in the case of using IBE, the TTP should provide information about
all available attributes so that the data owner can define the access structure
for the potential recipient of her data. The PEP should be semi-trusted in the
following sense. An adversary, whose attributes do not satisfy the access structure
7, cannot decrypt the ciphertext even if it has obtained the ciphertext; however,
other subjects will be able to decrypt the ciphertext. In the latter case, the
privacy policy will be violated if the condition is not satisfied when the data is
disclosed.

We consider the following situations where policy updating and key updating
may happen.

— To update the constraint condition in an authorization rule (7, condition, ¢;),
the data owner just needs to inform the PEP to update the parameter
condition.

— For any authorization rule (7, condition, ¢;), consider the situation that the
7 is to be changed to 7/. In this case, the data owner needs to generate
¢ = Encrypt(m;, 7', pk) and let the PEP replace ¢; with ¢. Similar to the
case in the enforcement mechanism using PKE, the data owner needs to find
another way to recover m; in order to compute c;.

— For CP-ABE, private key updating is a complex issue. According to existing
schemes, in order to revoke some attributes possessed by a user, then the
TTP potentially needs to update these attributes in all relevant users. With
respect to an enforcement mechanism using CP-ABE, if the private keys
associated with 7 are compromised, then all authorization rules associated
with any attribute in 7 may need to be updated.

4.4 Enforcement Mechanism using PRE

PRE provides us a general framework to incorporate other encryption tech-
niques, as the delegator’s encryption scheme and the delegatee’s encryption
scheme could be any of {PKE, IBE}?. The main concept of policy enforcement

3 There is no literature on whether or not CP-ABE can be put in the framework of

PRE.

11

www.manaraa.com

using PRE is letting the data owner (acting as the the delegator in the PRE
framework) encrypt the message using her own public key pk, and partially en-
force her policy by assigning a re-encryption key to the PEP, while letting the
PEP (acting as the the proxy in the PRE framework) enforce other constraints.

Suppose the data owner uses a scheme (Setup,, KeyGen,, Encrypt,, Decrypt,),
and the TTP uses a scheme (Setup,, KeyGen,, Encrypt,, Decrypt,). A formal def-
inition of PRE is given in Appendix D. In the initialization phase, the data
owner obtains a public/private key pair (pk,, sk,). Depending on the encryption
scheme, the initialization phase for the TTP’s domain is the same as in one of
the previous enforcement mechanisms. In more detail, the enforcement works as
follows.

1. Policy enforcement by the data owner: If the data owner wants to grant the
subject (identified by id,) access to m; under the condition condition, she
proceeds as follows:

(a) Encrypt m; using her public key to obtain ¢; = Encrypt, (m;, pk,).
(b) Validate the receiver’s public key and the TTP’s public parameter.

(¢c) If the validation is ok, send (id,, condition, ¢;) and the proxy re-encryption
key rkpr, —pki.y, = Pextract(pka, pkiq, , skq) to the PEP.

2. Policy enforcement by the PEP: When Bob requests the message m;, the
PEP does the following.

(a) Validate that condition holds.
(b) If the condition is ok, send ¢ to Bob, where

/
c; = Preenc(c;, rkpr, —phiq,)-

3. (Optional.) Policy enforcement by the TTP: When Bob requests his private
key according to the identifier id,., the TTP does the following.

(a) Validate the identity id, for Bob.
(b) If the request is valid, send sk;q, to Bob.

Note that the optional step is required only if the TTP uses an IBE scheme.
For this enforcement mechanism, both the expressiveness and TTP’s role depend
on the TTP’s encryption scheme. Here, it is more efficient for the PEP with
respect to storing the ciphertexts than in other enforcement mechanisms: the
PEP does not need to keep the ciphertexts secret but only needs to keep the
re-encryption keys secret, while the PEP needs to keep the ciphertext secret
in others. On the other hand, the PEP needs to re-encrypt the data owner’s
ciphertext during the disclosure, which is less efficient than in other enforcement
mechanisms where the PEP just needs to forward the ciphertext.

In the enforcement mechanisms using any of {PKE, IBE, or CP-ABE}, the
data owner can be assured that, whatever happens to the PEP, only the specified

12

www.manaraa.com

subject can have access to the data item though the condition may not be satis-
fied. But, with an enforcement mechanism using PRE, this fact may not be true
because the re-encryption key can re-encrypt all of the data owner’s ciphertexts.
Consider a situation that the data owner stores only (id,,,condition,c;) and
(idy,, condition, c;) at the PEP. In this case, the PEP potentially can re-encrypt
Ci,

/ .
¢; = Preenc(ci, 7kpk, —phia,,)

to make the subject identified by d,, be able to obtain m;. Therefore, the data
owner should have a higher level trust on the PEP if an enforcement mechanism
using PRE is used. In Section 5 we show that replacing the PRE with TPRE
will mitigate this problem.

We consider the following situations where policy updating and key updating
may happen.

— To update the constraint condition in an authorization rule (id,., condition, ¢;),
the data owner just needs to inform the PEP to update the parameter
condition.

— This enforcement mechanism is more efficient than others with respect to
updating policies. For any authorization rule (id,., condition, ¢;), consider the
situation that the id, is to be changed to id;. In this case, the data owner
only needs to inform the PEP to replace id, with id; in the authorization
rule, and possibly issues the re-encryption key rkpr, —pk; "y if it does not exist.
However, in other enforcement mechanisms, the data owner should encrypt
all the plaintexts again using the new public key.

— This enforcement mechanism is more efficient for the PEP than others with
respect to updating the receiver’s key pair. If the private key skiq, is expired
or compromised, then all authorization rules associated with id,. should be
updated. In this case, the data owner only needs to generate a new re-
encryption key rkpkaﬁpkidr for the PEP. However, for other mechanisms,
the data owner needs to recover the relevant plaintexts first and encrypt
them again using the receiver’s new public key.

— If the data owner’s private key pk, is compromised, then she needs to gen-
erate a new key pair (pk/,sk!) and inform the PEP to replace every re-
encryption key rkpr, —pk;,, With rkprs —pk,, . For any policy (id,, condition, c;),
the data owner needs to generate ¢; = Encrypt(m;,pk,) and let the PEP re-

place ¢; with /.

Consider the following case where the data owner needs to enforce her policies
on the same data item m; for multiple receivers. With an enforcement mechanism
using PRE, the data owner only needs to encrypt m; once and possibly needs to
generate a re-encryption key for each recipient. Note the fact that, if the data
owner grants the same recipient multiple data items, she only needs to generate
the re-encryption key once. However, it is less efficient in other enforcement
mechanisms because the data owner should encrypt m; using each recipient’s

13

www.manaraa.com

public key. In addition, the data owner may need to enforce different policies on
a data item m,; at different time, an enforcement mechanism using PRE does
not require her to store a copy of m; while other enforcement mechanisms do
have this requirement.

Consider the following case where the data owner needs to enforce policies on
here data which are generated by third parties. With an enforcement mechanism
using PRE, the third party can encrypt the messages using the data owner’s
public key and deposit the ciphertexts at the PEP. Later on, the data owner
can avoid the encryption operations in enforcing her policies. However, for other
mechanisms, the data owner needs to encrypt all the plaintexts from the third
party to enforce her policies. Hence, the PRE mechanism is more efficient than
others in these scenarios. In next section we show that this advantage is more
obvious if a TPRE is adopted.

5 Enforcement Mechanism using TPRE

In this section we propose an enforcement mechanism using TPRE in order to
mitigate the problems with that using PRE.

5.1 The Motivation

With respect to the traditional PRE schemes (e.g. [7,19]) and their applications,
we observe the following drawbacks.

— With a re-encryption key, the proxy is capable of re-encrypting all the ci-
phertexts of the delegator, so that any delegatee potentially can obtain all
of the delegator’s data. In order to revoke a compromised re-encryption key,
the delegator’s key pair should be revoked.

— The delegator should trust the proxy to properly re-encrypt all her cipher-
texts. If the delegator has a number of data sets which has different sensitive
levels, the delegator needs to choose a different key pair for each possible
subset of his messages and choose a proxy to delegate her decryption right.
In practice, this approach is not very realistic because the delegator needs
to maintain a number of key pairs.

As shown in Figure 2, with a TPRE, the delegator can generate a re-encryption
key for each combination of receiver and message type, and every re-encryption

key only works for the intended type of message. A formal definition of TPRE
is in Appendix D.

With TPRE, the problems associated with PRE are eliminated. The dele-
gator can categorize her data into different subsets and delegate the decryption

14

www.manaraa.com

rk=Pexiractipk, pk_J L1, sk}

rk=Pextract(pk, pk_n, t_1, sk

rk=Pextract(pk, pk_1,t i, sk)-‘

- L C’ = Preenc(C, rk)
€ = Encryptem i, pk) Q rk=Pextract(pk, pk_j, t_i, sk) a Q
_—
Delegator L. Delegatee

k=Pexlract(.|‘:.k‘ pk_n, ti,, sﬁ

(pk, sk)and {t 1.t 2, ..} Proxy (pk_Jj,sk_j}

Fig. 2. Overview of TPRE

right of each subset through a different proxy, while the delegator only needs one
key pair to do so. As a result, the delegator can choose a different proxy to dele-
gate the re-encryption right based on the sensitive level of her data. Compromise
of one re-encryption key will only affect one type of messages. In order to revoke
a compromised re-encryption key of type ¢, the delegator can just generate a
new re-encryption key for a new type t* which could be defined to contain the
same messages of type t.

5.2 Enforcement Mechanism using TPRE

The main concept of enforcing sticky policy using TPRE is the same as in
the case of using PRE. However, in practice, the data owner only needs to
have one key pair but can choose different proxies based on her trust and
the sensitive level of her data. Suppose the data owner categorizes her data
into types {t1,t2,---} and uses a type-based public key encryption scheme
(Setup;, KeyGen,, Encrypt,, Decrypt,), as defined in Appendix A. Suppose the
TTP uses an encryption scheme (Setup,, KeyGen,, Encrypt,, Decrypt,). In the
initialization phase, the data owner obtains a public/private key pair (pkq, skq)
and publishes her categorization of data. In more detail, the enforcement works
as follows.

1. Policy enforcement by the data owner: If the data owner wants to grant
the subject (identified by id,.) access to a message m; of type t; under the
condition condition, she proceeds as follows:

(a) Encrypt m; using her public key to obtain ¢ = Encrypt, (m;, t;, pkq).
(b) Validate the receiver’s public key pk;q. and the TTP’s public parameter.

15

Ol LAC U Zyl_ﬂbl

www.manaraa.com

(c) If the validation is ok, send (id.., t;, condition, ¢;) and the re-encryption
key rk to the PEP, where

pka _’pkidr

rk = Pextract(pkq, pkid, , ti, skaq)-

t.
pka _Z’pkidr

2. Policy enforcement by the PEP: When Bob requests the message m;, the
PEP does the following.

(a) Validate that condition holds.
(b) If the condition is ok, send ¢; to Bob, where

/
¢; = Preenc(c;, ti,rk .
pka—pkid,

3. (Optional.) Policy enforcement by the TTP: When Bob requests his private
key according to the identifier id,., the TTP does the following.

(a) Validate the identity id, for Bob.
(b) If the request is valid, send sk;q, to Bob.

Note that the optional step is required only if the TTP uses an IBE scheme.
This enforcement mechanism possesses all the advantages of the enforcement
mechanism using PRE, while relaxes the security requirements on the PEPs.

The data owner can choose different PEPs to enforce her privacy policies on
her sensitive data at different sensitive levels. If one PEP, which possesses the
re-encryption key rkpka ks has been compromised, then other types of data
will not be affected (in contrast to that using PRE) given CPA/CCA securities is
achieved. To revoke her compromised re-encryption key, the data owner needs to
create a new type t} so that all all data in the category t; should be redefined to be
in the category t;r. Correspondingly, any authorization rule (id,, t;, condition, ¢;)

should be replaced with (id,, t;[, condition, c;r), where
¢l = Encrypt, (mg,], pkq).

When the data owner’s sensitive data are generated by a third party (as in the
cases of Google Health and Microsoft HealthVault), this enforcement mechanism
provides more flexibility. With careful categorization, the data owner can define
her privacy policies for each type of her data in the form of (id,, t;, condition).
Later on, any third party can just send the ciphertext together with the type
information to the PEP, which will then be able to connect it with the corre-
sponding privacy policies. In this aspect, this enforcement mechanism is better
than that using PRE.

16

Ol LAC U Zyl_i.lbl

www.manaraa.com

6 Conclusion

In this paper we have provided an overview of using various public key encryption
techniques to enforce sticky policies. The comparison results indicate that the
enforcement mechanism using PRE provides a better performance in the aspects
of the policy updating and key updating for the data receivers. The enforcement
mechanism using TPRE further improves the performance by mitigating the key
management inefficiency for the data owner. However, we should note that what
we have done is only a step towards a comprehensive sticky policy enforcement
mechanism. A number of issues are still open to further research.

1. In the the TPRE framework proposed by Tang [30], the encryption schemes
have only been instantiated to PKE. Therefore, it is interesting to investigate
the instantiations using IBE or even CP-ABE.

2. In our discussions, we have assumed that the data owner will define all the
policies for her data, which means all authorizations are directly from the
data owner. In practice, we may want a more smooth process: If Bob has
obtained the data item m; in the form of ¢ (a ciphertext of his public key),
if Bob is authorized to re-distribute m; to another user Mike, then it is
more efficient and potentially secure for Bob to re-encrypt ¢} into ¢/, which
is a ciphertext under Mike’s public key. It is interesting to investigate the
possibility of extend the TPRE framework to multi-level delegations (as in
[14]), and instantiate the encryption schemes to IBE and PKE.

3. Another interesting research direction is to take obligation into account and
incorporate the corresponding enforcement techniques into the sticky policy
enforcement mechanisms.

References

1. American National Standards Institute (ANSI). ANSI INCITS 359-2004 for Role
Based Access Control, 2004.

2. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on
Information and System Security, 9(1):1-30, 2006.

3. D. Bell and L. La Padula. Secure computer systems: A mathematical model.
Technical Report Technical report MTR-2547, MITRE Corp., 1973.

4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In H. Krawczyk, editor, Advances in
Cryptology — CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science,
pages 26—45. Springer, 1998.

5. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-
cryption. In 2007 IEEE Symposium on Security and Privacy (SE&P 2007), pages
321-334. IEEE Computer Society, 2007.

6. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-Based En-
cryption. pages 321-334. IEEE Computer Society, 2007.

17

www.manaraa.com

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryp-

tography. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
volume 1403 of Lecture Notes in Computer Science, pages 127-144. Springer, 1998.

. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In

J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, volume 2139 of Lecture Notes in Computer Science,
pages 213-229. Springer, 2001.

. M. J. Covington and M. R. Sastry. A contextual attribute-based access control

model. In R. Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaning-
ful Internet Systems 2006: OTM 2006 Workshops, volume 4278 of Lecture Notes
in Computer Science, pages 1996—2006. Springer, 2006.

R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167-226, 2004.

Council European Parliament. Directive 2002/58/EC of the European parliament
and of the council of 12 july 2002 concerning the processing of personal data and
the protection of privacy in the electronic communications sector (directive on
privacy and electronic communications). Official Journal, 1L.201:37-47, 2002.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In A. Juels, R. N. Wright, and
S. De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, pages 89-98. ACM, 2006.
G. Graham and P. Denning. Protection — principles and practice. In Proceedings
of the Spring Jt. Computer Conference, volume 40, pages 417-429, 1972.

M. Green and G. Ateniese. Identity-based proxy re-encryption. In J. Katz and
M. Yung, editors, Applied Cryptography and Network Security, 5th International
Conference, volume 4521 of Lecture Notes in Computer Science, pages 288-306.
Springer, 2007.

L. Ibraimi, Q. Tang, P. Hartel, and W. Jonker. A type-and-identity-based proxy re-
encryption scheme and its application in healthcare. In W. Jonker and M. Petkovic,
editors, Secure Data Management, SDM 2008, volume 5159 of Lecture Notes in
Computer Science, pages 185-198. Springer, 2008.

A. Ivan and Y. Dodis. Proxy cryptography revisited. In Proceedings of the Network
and Distributed System Security Symposium. The Internet Society, 2003.

G. Karjoth, M. Schunter, and M. Waidner. Platform for enterprise privacy prac-
tices: Privacy-enabled management of customer data. In R. Dingledine and P. F.
Syverson, editors, Privacy Enhancing Technologies, Second International Work-
shop, volume 2482 of Lecture Notes in Computer Science, pages 69—-84. Springer,
2002.

M. Mambo and E. Okamoto. Proxy Cryptosystems: Delegation of the Power to
Decrypt Ciphertexts. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, 80(1):54-63, 1997.

M. Mambo and E. Okamoto. Proxy cryptosystems: Delegation of the power to
decrypt ciphertexts. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences, E80-A(1):54-63, 1997.

A. D. Miller and W. K. Edwards. Give and take: a study of consumer photo-
sharing culture and practice. In CHI ’07: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 347-356. ACM, 2007.

18

www.manaraa.com

21. M. C. Mont, S. Pearson, and P. Bramhall. Towards accountable management
of identity and privacy: Sticky policies and enforceable tracing services. In 14th
International Workshop on Database and Expert Systems Applications (DEXA’03),
pages 377-382. IEEE Computer Society, 2003.

22. J. S. Olson, J. Grudin, and E. Horvitz. A study of preferences for sharing and
privacy. In CHI ’05: CHI ’05 extended abstracts on Human factors in computing
systems, pages 1985-1988. ACM, 2005.

23. Organization for the Advancement of Structured Information Standards (OASIS).
eXtensible Access Control Markup Language (XACML) Version 2.0, 2005.

24. H. C. Pohls. Verifiable and revocable expression of consent to processing of ag-
gregated personal data. In L. Chen, M. Dermot Ryan, and G. Wang, editors,
Information and Communications Security, 10th International Conference, ICICS
2008, volume 5308 of Lecture Notes in Computer Science, pages 279-293. Springer,
2008.

25. RFC 3281. An Internet Attribute Certificate Profile for Authorization, 2002.

26. A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,
Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 457-473. Springer, 2005.

27. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology, Proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer
Science, pages 47-53. Springer, 1985.

28. N. P. Smart. Access Control Using Pairing Based Cryptography. In M. Joye, editor,
Topics in Cryptology, CT-RSA 2003, volume 2612 of Lecture Notes in Computer
Science, pages 111-121. Springer, 2003.

29. P.C. Tang, J.S. Ash, D.W. Bates, J.M. Overhage, and D.Z. Sands. Personal Health
Records: Definitions, Benefits, and Strategies for Overcoming Barriers to Adoption.
Journal of the American Medical Informatics Association, 13(2):121-126, 2006.

30. Q. Tang. Type-based proxy re-encryption and its construction. In D. R. Chowd-
hury and V. Rijmen, editors, Proceeding of the 9th International Conference on
Cryptology in India (INDOCRYPT 2008), volume 5365 of Lecture Notes in Com-
puter Science, pages 130-144. Springer, 2008.

31. The US Department of Health and Human Services. Summary of the HIPAA
Privacy Rule, 2003. http://www.hhs.gov/ocr/privacysummary.pdf.

32. L. Wang, Z. Cao, T. Okamoto, Y. Miao, and E. Okamoto. Authorization-Limited
Transformation-Free Proxy Cryptosystems and Their Security Analyses*. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, (1):106-114, 2006.

Appendix A: Algorithm Definitions for PKE

A PKE scheme [4] involves a Trusted Third Party (TTP) and users, and
consists of four algorithms (Setup, KeyGen, Encrypt, Decrypt) which are defined
as follows.

— Setup(k) : Run by the TTP, this algorithm takes a security parameter k as
input and generates the public parameter params, which is an implicit input
to other algorithms.

— KeyGen(k) : Run by a user, this algorithm generates a key pair (pk, sk).

19

www.manaraa.com

— Encrypt(m, pk) : Run by the message sender, this algorithm takes a message
m and a public key pk as input, and outputs a ciphertext ¢ encrypted under
the public key pk.

— Decrypt(c, sk) : Run by the message receiver, this algorithm takes a cipher-
text ¢ and the private key sk as input, and outputs the message m.

Type-based PKE enables a message sender to explicitly include some type
information in the encryption process. A type-based PKE consists of four algo-
rithms (Setup, KeyGen, Encrypt, Decrypt), where Setup and KeyGen are defined as
above, and

— Encrypt(m, ¢, pk) : Run by the message sender, this algorithm takes a message
m, a type string ¢, and a public key pk as input, and outputs a ciphertext
c encrypted under the public key pk. Note that both ¢ and ¢ should be sent
to the message receiver.

— Decrypt(c, t, sk) : Run by the message receiver, this algorithm takes a cipher-
text ¢, a message type t, and the private key sk as input, and outputs the
message m.

Note that Type-based IBE can be defined in the same way.
Appendix B: Algorithm Definitions for IBE

An IBE scheme consists of four algorithms (Setup, KeyGen, Encrypt, Decrypt).

— Setup(k) : Run by the TTP, this algorithm takes a security parameter k as
input and generates the public parameter is params and a master key mk.
The public parameter params is an implicit input to other algorithms.

— KeyGen(id, mk) : Run by the TTP, this algorithm takes an identifier id and
the master key mk as input, and outputs the private key sk;4 corresponding
to id.

— Encrypt(m,id) : Run by the message sender, this algorithm takes a message
m and an identifier id as input, and outputs a ciphertext ¢ encrypted under
the public key corresponding to id.

— Decrypt(c, skiq) : Run by the user with identifier id, this algorithm takes a
ciphertext ¢ and the private key sk;q as input, and outputs the message m.

Appendix C: Algorithm Definitions for CP-ABE

A CP-ABE scheme consist of four algorithms (Setup, KeyGen, Encrypt, Decrypt),
defined as follows.

— Setup(k) : This algorithm takes as input a security parameter & and outputs
the public parameters pk and a master key mk.

20

www.manaraa.com

— KeyGen(w, mk). This algorithm takes as input the master key mk and a set
of attributes w, and outputs a private key sk, associated with w.

— Encrypt(m, 7, pk). This algorithm takes a message m, an access tree 7, and
the receiver’s public key pk as input, and outputs a ciphertext c, which
contains 7. For example, if there are three attributes {ai,as,as} then 7
could be (a3 A a2) V as.

— Decrypt(c,, sk). This algorithm takes as input a ciphertext c;, a secret key
sk,, of private attributes for a set w, and it outputs a message m or an error
symbol L.

Appendix D: Algorithm Definitions for PRE

Proxy re-encryption is a cryptographic primitive developed to delegate the
decryption right from one party (the delegator) to another (the delegatee). Sup-
pose that the delegator with key pair (pkq, sk,) is registered at TTP; with an
encryption scheme

(Setup;, KeyGen,, Encrypt,, Decrypt;)

and the delegatee with key pair (pk,, sk;,) is registered at TTPy with another
encryption scheme

(Setup,, KeyGen,, Encrypt,, Decrypt,).

Note that both the encryption schemes could be any of {PKE, IBE}. Apart
from the above algorithms, a PRE scheme consists of the following two new
algorithms:

— Pextract(pkq, pk;, skq) : This algorithm takes the delegator’s public key pk,,
the delegatee’s public key pk,, the delegator’s private key sk, and outputs
the proxy key rkpr,—pk, to the proxy.

— Preenc(c, rkpk, —pk,) : Run by the proxy, this algorithm takes a ciphertext c
for the delegator and the re-encryption key rkp,—pk, as input, and outputs
a new ciphertext ¢’ for the delegatee.

In the case of TPRE, the delegator uses a type-based encryption scheme
(Setup, , KeyGeny, Encrypt;, Decrypt,) as defined in Appendix A. The algorithms
Pextract and Preenc are defined as follows.

— Pextract(pky, pkr, t, sk,) : This algorithm takes the delegator’s public key
pk., the delegatee’s public key pk,., a message type t, the delegator’s private
key sk, as input and outputs the delegation key rkpkagpkr.

— Preenc(c, t, rk:pk Lp/c,,.) : Run by the proxy, this algorithm takes a ciphertext

¢ (for the delegator), a message type t, and the re-encryption key rkpk Lok

as input, and outputs a new ciphertext ¢’.

21

www.manaraa.com

